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Abstract. Vector-coupling or Clebsch-Gordan coefficients for irreducible representations 
of the space group D:, have been calculated at symmetry points of the hexagonal Brillouin 
zone. All arms of the wavevector stars and all wavevector selection rules are enumerated. 

1. Introduction 

The space group D& (P6J mmc) of the hexagonal close-packed ( HCP) structure is the 
symmetry group of metals of the second column of the Periodic Table and of graphite 
(Olbrychski and Gorzkowski 1972). Ice I h  also crystallises in the HCP structure 
(Landolt-Bornstein 1975). It exists over a wide range of temperatures (from about 
-130 to 0 “C) and over a range of pressures (from 0 to about 2 kbar (Eisenberg and 
Kauzmann 1969)) and has been studied by several methods (Eisenberg and Kauzmann 
1969, Landolt- Bornstein 1975). More recently, high-resolution neutron diffraction 
studies of ice I h  have been performed by Kuhs and Lehmann (1983). 

Here we want to give the Clebsch-Gordan coefficients (CGCS) for the irreducible 
representations of the space group of the HCPS structure. 

Birman and Berenson (1974) have shown that the elements of the first-order 
scattering tensor are precisely CGCS multiplied by certain constants and the elements 
of the second-order tensor are bilinear sums of CGCS. The matrix elements of the 
effective Hamiltonian are also products of appropriate CGCS and symmetrised tensorial 
field quantities (Birman et a1 1976). 

Recently Kotzev and Aroyo (1982) have calculated CGCS for Shubnikov magnetic 
point groups of the hexagonal structure and Benbow (1980) has published tables of 
the optical dipole selection rules for Bloch states on the HCP lattice. 

The irreducible representations of the space group D& and the selection rules for 
their products are given by Cracknell et al (1979). Leading wavevector selection rules 
are constructed with the aid of table 5 of Davies and Cracknell (1976) and are the 
same as those given by Cracknell er a1 (1979). 

2. Vector-coupling coefficients for the space group 

For the irreducible space-group representation kl contained in the direct product of 
the irreducible representations k’l’  and k”l” with wavevectors satisfying the wavevector 
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selection rule 

cp,,,k' + cp,,.,k" = cpuk (1) 

the basis functions 42; are linear combinations of the basis function products +:'.'d,,@::/i,, 
with the vector-coupling of Clebsch-Gordan coefficients 

Methods of calculation of CGCS have been given by Gard (1973), Sakata (19741, 
Birman (1974), Berenson and  Birman (1975), Berenson et a/ (1975), van den Broek 
and Cornwell (1978), van den Broek (1979), Dirl (1979), Kunert and Suffczyriski 
(1980), Suffczynski and Kunert (1982) and Kunert (1983). Here we use the method 
of Berenson and  Birman (1975) because in our case the multiplicity index is equal to 
one. 

To compute the CGC 

we decompose the space group G into cosets with respect to the wavevector group, G( k ' ) ,  
G(k") and  G ( k )  (see table 2 )  and we find the coset representatives 

{ V d  I 7dI I CPU,, I 7, {%I 7,) (4) 

and the wavevector stars (see tables I and 3). Starting from the leading wavevector 
selection rules 

cphsk'+ pA . ,k"=  k (5) 

we construct all wavevector selection rules (1) (see table 4). The principal ( u ' = h ' ,  

Table 1. Coordinates of the wavevector stars at the symmetry points of the hexagonal 
Brillouin zone. a L  and cL are the hexagonal lattice constants. 

k, -=[O,  0, 0157 
k , = [ O ,  0, I / 2 c L ] r  
k ,  = [ 1 / 3 a L ,  l / J a L ,  l / 2 c L ] n  
k K = [ I / 3 a L ,  1 / 3 a L ,  017 
k , = [ 1 / 2 a L ,  0, 1/2cL]i7 2 k L = [ 0 ,  1 /2a , ,  1 /2c , ]n  3 k L = [ - 1 / 2 a L ,  l / 2 a L ,  1 / 2 c L ] n  

k ,  = [ 1/2a , ,  0, 0157 3kw = [ - 1 / 2 a L ,  1 / 2 a L ,  l / 2 c L ] n  

2 k H  = [ - 1 / 3 a L ,  2 / 3 a , ,  1 / 2 c L ] n  
2 k K = [ - 1 / 3 a L ,  2 / 3 a L ,  0157 

Zk,  =[O, 1 / 2 a L ,  1/2cL].n 

Table 2. Decompositions of the space group DZh into cosets with respect to the wavevector 
groups G ( k , - ) ,  G ( k , ) ,  G ( k , ) ,  G ( k , ) ,  G ( k L )  and G ( k w ) .  T = ( O , O , $ ) C L .  
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a= 1 a = 2  a =  1 a = 2  U =  I u = 2  

Table4. WaveLector selection rules, blocks and symmetry operations { pr ~ T ~ }  for calculating 
CGCS in D4hh. N = ( l , { 4 1 ~ } ,  1 3 , { 1 6 1 ~ } ) ;  7 = ( 0 , 0 , f ) c L .  

k ' +  k " =  k k ' + k " =  k a' a" a a' 0'' U { P x I ~ x }  

N 

k ,  + k,- = k,. 
k H + 2 k H = k r  
2 k ,  t k ,  = k ,  
2 k ,  + 2 k ,  = k ,  
k,+ k ,  = 2 k K  
k,+ k ,  = k ,  
2 k L + 2 k , =  k,. 
3 k L + 3 k L = k , -  
2 k L + 3 k L = k ,  
2 k L r  k ,  = 3 k ,  
3 k L + 2 k L =  k ,  
3 k , t k L = 2 k ,  
k L + 3 k ,  = 2 k ,  
k L +  Z k ,  = 3 k ,  

G ( k , )  k,+k,=k, 1 1 1 1 1  10) 
k K + 2 k K = k ,  1 2 1 r 1 1 1 { l I O }  

2 k K + 2 k , = k K  2 2 1 K 1 1 1 (110) 
G ( k K )  Zk ,+k ,=k ,  2 1 1 2 2 1 1217) 

G ( k , )  k , + k K = 2 k K  1 1 2 2 2 2 { Z I T }  

k,+k,=k, I 1 I { I  lo1 
2k,+2k,=k1 2 2 I ( 2  17) 

G ( k V )  3k,+3k,=kI 3 3 1 i 3 I 0 )  
2 k V + 3 k , = k ,  2 3 I M 1 1 I (110) 
2 k , + k , = 3 k v  2 1 3 I 2 3 17/01 
3 k , + 2 k V = k ,  3 2 I 2 3 1 {817} 
3 k V + k , = 2 k ,  3 1 2 2 2 2 { 2 i T }  
k , + 3 k V = 2 k ,  1 3 2 3 1 2 1910) 

N k L + 2 k , = 3 k v  1 2 3 3 3 3 1310) 

u"= A "  and U = 1) block of CGCS is computed from the small representations d k " ' ,  dk" '"  
and d k ' :  

by performing summations over the intersection of the three wavevector groups 

s = { q s  I Ts} E IV = G( k ' )  A G( k " )  A G( k ) .  ( 7 )  
Ic (k) l  is the order of the point group of G ( k )  and d im( / )  is the dimension of the 
small irreducible representation dk' .  The indices b', b", b in equation (6) have to be 
chosen such that the sum with diagonal indices ha5 a non-vanishing value. For each 
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Table 5. CGCS for T,,OT, ( n  = 5 * ,  61.) in D&,. 

a a " a = l  I 2 I 

I 1  0 0 I 0 
1 2  I 0 0 I 
2 1  I 0 0 - 1  
2 2  0 I 0 0 

Table 6.  CGCS for A , O A ,  ( j =  1,2) in D& 

A,OA,= [r,+ +I-,+ +I--] +r2-  

1 1  0 I 1 0 
1 2  I 0 0 I 
2 1  1 0 0 - I  
2 2  0 I - 1  0 

Table 7. CGCS for A@A, in D:, 

A,%IA,= [r , ,+ r3++r4- + r+  +r,= I +rz ,  ti-- +r4+ +r , -~  
a '  a" a = I I 1  1 2  1 2 1 1 1 1 2  

1 1  0 0 0  0 0  0 1 0 0 0 0 0  
1 2  1 0 0  0 0  0 0 1 0 0 0 0  
1 3  0 I 1  0 0  0 0 0 1 1 0 0  
1 4  0 0 0  0 1  0 0 0 0 0 0 1  

2 1  I 0 0  0 0  0 0 - 1  0 0 0 0 
2 2  0 0 0  0 0  1 0 0 0 0 0 0  
2 3  0 0 0  - 1 0  0 0 0 0 0 - 1  0 
2 4  0 - 1  I 0 0  0 0 0 - 1  I O  0 

3 1  0 I I  0 0  0 0 0 - 1 - 1  0 0 
3 2  0 0 0  - 1 0  0 0 0 0 0 1 0  
3 3  0 0 0  0 0  TI 0 0 0 0 0 0 
3 4  i l  0 0  0 0  0 O T I  0 0 0 0 

4 1  0 0 0  0 1  0 0 0 0 0 0 - 1  
4 2  0 -1  1 0 0  0 0 0 1 - 1  0 0 
4 3  SI 0 0  0 0  0 O i l  0 0 0 0 
4 4  0 0 0  0 0  O F 1  0 0 0 0 0 

- - 
2 2 2 - 2  \'2 2 2 2 v 2  
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wavevector selection rule of equation ( 1  ) we compute one symmetry operation {cpz 1 T ~ }  

which rotates the principal block into the u'o'Iu block: 

VrPA-k'  = kb,  prpA,,k" = k:,, cprk = k ,  (8) 

The (+'u''u block is computed from the principal block by matrix multiplication: 

Table 8. CGCS for H,OH, ( j  = I ,  2) and K, BK,, ( n  = 5,6) in D&. The channel 1 .  

a = 1  
a' a" a '  a" a = 1  1 1  2 1  1 1 2  

1 2 1 1  
I 2  
2 1  
2 2  

2 1 1 1  
I 2  
2 1  
2 2  

0 0 0 I O  0 0 1  
I 1 0  0 1  1 0 0  

- w' G 0 O H ,  -w 0 0  
0 O T W  0 0  0 F W  0 

0 0 0 - G O  0 O G  
I - I  0 0 1  - 1  0 0  

- w, - w, - 0 O G  G 0 0  
0 O r 3  0 0  0 T G  0 

Table 9. CGCS for H , O H ,  ( j  = 1.2) and K , O K ,  ( n  = 5,6) in D&. The channel K. 

a = l  2 1 1 2 2 1 2  
a ' " ' a ' a "  a = l  1 1 2 1 2 I I  

1 1 1 1  
1 2  
2 1  
2 2  

2 2 1 1  
1 2  
2 1  
2 2  

0 
1 
1 
0 

0 0 1  
1 0 0  
1 0 0  
0 G O  

0 1  0 
0 0  1 
0 0  -1  
G O  0 

0 
I 

- 1  
0 
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3. Description of tables 

Tables 1-4 give details which are needed in the calculation of the CGCS. The canonical 
wavevector, numbering of symmetry operations, labels and generators of the irreducible 
representations are as given in the tables of Miller and Love (1967). The principal 
blocks of CGCS have been computed with the aid of the computer program given by 
Kowalczyk et al (1980). The wavevector group intersections are also indicated in 
table 4. On the right-hand side of table 4 we give a column with an additional description 
of the blocks such that the block corresponding to the leading wavevector selection 
rules ( LWSR) in both channels r and K or and M has the indices 11 1 which facilitates 
the calculation of the other blocks of CGCS. This column is connected with the right-hand 
sides, after the vertical rules, of table 3. 

Table 10. CGCS for H,OH,in D&. The channel r 

U =  I 

U' U'' (I' a" a = 1 1 1 1 1 1  

1 2 1 1  
I 2  
2 1  
2 2  

2 1 1 1  
1 2  
2 1  
2 2  

0 0 1 0 1 0  
1 1 0 1 0 1  

- 1  I O  1 0 - 1  
0 0 *I 0 = I  0 

0 0 - 1  0 I O  
I -I 0 1 0 - 1  

- 1 - 1  0 I O  1 
0 0 SI 0 = I  0 

2 2 2 2 2 2  

Table 1 1 .  CGCS for H ,OH,  in D&. The channel K 

u = l  2 1 2 1  2 1 2  
U'  U" a' (I" (I= 1 1 1 1 1  1 1 1  

1 1 1 1  1 I 0 0 
1 2  0 0 I 1 
2 1  0 0 1 -I 
2 2  1 - 1  0 0 

2 2 1  1 I I 0 0 
1 2  0 0 I I 
2 1  0 0 I - 1  
2 2  1 -I 0 0 



Coupling coeflcients for the space group D& 1633 

For the one-dimensional representations r,, m = l*, 2*, 35,  4*, in D:h, the 
Clebsch-Gordan matrices for T,OT, = r,+ are one dimensional with a single element 
equal to unity. 

Tables 5-15 give the CGCS for TOT, AOA, HOH, KOK, L O L  and M O M  in D:h. 
In these tables we use w = exp($.rr) and an overbar denotes complex conjugate. TKe 
number at the bottom of each representation column divides each element of that 
representation column. The entries not written explicitly are zero. 

In tables 7, 10, 13 and 14 the upper signs refer to the upper and the lower signs 
to the lower signs of the representations. In tables 8 and 15 the upper signs refer to 
the representations indicated by index j and the lower signs refer to the ones indicated 
by index n. In the tables labels of representations that contribute to the symmetrised 
square are enclosed in square brackets. 

Table 12. CGCS for K,@K, ( j  = 1 , 2 , 3 , 4 )  in D b .  

U =  1 1 1 2  
0’ U’’ C y ’  Cy” Cy = 1  1 1 1  

1 1 1 1  0 0 0 1  
1 2 1 1  1 1 0 0  
2 1 1 1  1 - 1  0 0  
2 2 1 1  0 0 1 0  

Table 13. CGCS for L,@L, G =  1 , 2 )  in DB. The channel r 

U =  1 
U’ U’‘ Cy’ C y “  C y = l  1 1 1  2 1 2 1 1 2  

1 1 1 1  
1 2  
2 1  
2 2  

2 2 1 1  
1 2  
2 1  
2 2  

3 3 1 1  
1 2  
2 1  
2 2  

1 I O  0 1 * * 0  0 0 
0 0 1 I - *  

0 
1 0 0 1  KJ 
1 0 0 1  KJ 0 0 -1 -1 6 
0 1 - 1 0  0 *1 K J O  0 0 

0 - 1 - 1 0  0 - w F w  0 0 0 
1 0 o w  w 0 0 I w - w  
1 0 o w  w 0 0 -1 -w w 
0 -1 1 0  0 F w - w  0 0 0 

0 1 1 0 0  * * I  0 0 0 
1 0 O K J  1 0 0 1 K J - 1  
1 0 o *  1 0 0 -1 -KJ 1 
0 1 - 1 0  0 *KJ I O  0 0 
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Table 14. C G C S  for L l @ L l ( j  = 1 , 2 )  in D&. The channel M. 

L, 0 L, = [MI* + M,+ +M,-  I + M , +  + M,- + Mq+ 

o = l 2  3 I 2  3 1 2  3 I 2  3 1 2  3 I 2  3 
v ' u " ( I ' a "  a = l  1 1 I I I I 1 1 1 1 1 I 1 1 1 1 1 

1 2 1 1  
1 2  
2 1  
2 2  

1 3 1 1  
1 2  
2 1  
2 2  

2 1 1 1  
1 2  
2 1  
2 2  

2 3 1 1  
1 2  
2 1  
2 2  

3 1 1 1  
1 2  
2 1  
2 2  

3 2 1 1  
I 2  
2 1  
2 2  

0 
I 

T I  

0 

0 
= I  

- 1  

0 

0 
= I  
- 1  

0 

0 
1 

' F I  

0 

0 I I 0 I 1 
1 0 0 I 0 0 

T I  0 0 E l  0 0 
0 - I  I 4 0  1 - 1  

- I  - I  0 I 1 
0 0 $ 1  0 0 
0 0 1 0 0 
1 - I  0 1 - I  

0 -1 -1 0 
*i 0 0 Ti 

I 0 - - I  

0 -1 I 0 
0 

1 1 
0 0 
0 0 

-i 1 

I 1 0 1 1 
0 0 I 0 0 
0 0 = I  0 0 

- I  I 0 I - 1  

1 1 0 I 1 
0 0 I 0 0 
0 0 ' F I  0 0 

- I  I 0 I - I  

-1 -1 0 -I 1 

*i 0 0 
I 0 0 

--I I 0 -1 1 

0 0 
0 0 

2 2 2 7 2 2 

Table 15. CGCS for M , O M ,  ( j = l * , 2 * )  and M , > B M , ?  ( n = 3 * , 4 * )  in DhJh. 

M , % M ,  = [r1+ +r,+ +MI_  1 +Mz, 
M , , B M r l  = [ I ' , +  TI-<-  +M,-  1 +M:+ 

u=I 1 1 1 2  3 1 2 3  
U '  U'' a '  a" a = I 1 2 I 1  I 1 1 1  

I l l 1  
1 2 1 1  
1 3 1 1  

2 1 1 1  
2 2 1 1  
2 3 1 1  

3 1 1 1  
3 2 1 1  
3 3 1 1  

1 1 2  0 0  0 0 0 0  
0 0 0  0 0  I 0 0 1  
0 0 0  0 1  0 0 - 1  0 

0 0 0  0 0 * I  0 0 TI  

1 I(' H' 0 0  0 0 0 0  
0 0 0  I O  0 1 0 0  

0 0 0  0 1  0 0 1 0  
0 0 0  *I 0 O T I O O  
1 2 1  0 0  0 0 0 0  
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